24. Xu, M., Jing, Z., J.A. Van Orman, T. Yu, Y. Wang, 2020. Density of NaAlSi2O6 Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography. Minerals, 10, 161, doi: 10.3390/min10020161.

23. Jing, Z., T. Yu, M. Xu, J. Chantel, Y. Wang, 2020. High-Pressure Sound Velocity Measurements of Liquids Using In Situ Ultrasonic Techniques in a Multianvil Apparatus. Minerals, 10, 126, doi: 10.3390/min10020126.

22. Bajgain, S.K., Y. Peng, M. Mookherjee, Z. Jing, M. Solomon, 2019. Properties of hydrous aluminosilicate melts at high pressures. ACS Earth Space Chem., 3, 390-402, doi: 10.1021/acsearthspacechem.8b00157.

21. Xu, M., Z. Jing, J. Chantel, P. Jiang, T. Yu, Y. Wang, 2018. Ultrasonic velocity of diopside liquid at high pressure and temperature: Constraints on velocity reduction in the upper mantle due to partial melts. J. Geophys. Res.: Solid Earth, doi: 10.1029/2018JB016187.

20. Chantel, J., Z. Jing, M. Xu, T. Yu, Y. Wang, 2018. Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in-situ ultrasonics: Implications to the solidification of Fe-P liquids in planetary cores. J. Geophys. Res.: Planets, 123, 1113-1124, doi:10.1029/2017JE005376.
19. Gréaux, S., Y. Kono, Y. Wang, A. Yamada, C. Zhou, Z. Jing, T. Inoue, Y. Higo, T. Irifune, N. Sakamoto, H. Yurimoto, 2016. Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239-4246, doi:10.1002/2016GL068377.
18. Chantel, J., G. Manthilake, D. Frost, C. Beyer, Z. Jing, Y. Wang, T.B. Ballaran, 2016. Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300K. Am. Mineral., 101, 991-997. 
17. Jing, Z., Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M.L. Rivers, S.R. Sutton, G. Shen, 2014. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth Planet. Sci. Lett., 396, 78-87.
16. Sakamaki, T., Y. Kono, Y. Wang, C. Park, T. Yu, Z. Jing, G. Shen, 2014. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure. Earth Planet. Sci. Lett., 391, 288-295.
15. Wang, Y., T. Sakamaki, L.B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M.L. Rivers, S.R. Sutton, 2014. Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241, doi:10.1038/ncomms4241.
14. Hustoft, J., G. Amulele, J. Ando, K. Otsuka, Z. Du, Z. Jing, S. Karato, 2013. Plastic deformation experiments to high strain on mantle transition zone minerals wadsleyite and ringwoodite in the rotational Drickamer apparatus. Earth Planet. Sci. Lett., 361, 7-15.
13. Chantel, J., D. Frost, C.A. McCammon, Z. Jing, Y. Wang, 2012. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200K. Geophys. Res. Lett., 39, L19307, doi:10.1029/2012GL053075.
12. Jing, Z., S. Karato, 2012. Effect of H2O on the density of silicate melts at high pressure: Static experiments and the application of a new equation of state. Geochim. Cosmochim. Acta., 85, 357-372.
11. Jing, Z., S. Karato, 2011. A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures. Geochim. Cosmochim. Acta., 75, 6780-6802.
10. Kawazoe, T., S. Karato, J. Ando, Z. Jing, K. Otsuka, and J.W. Hustoft, 2010. Shear deformation of polycrystalline wadsleyite up to 2100 K at 14-17 GPa using a rotational Drickamer apparatus (RDA). J. Geophys. Res., 115, B08208, doi: 10.1029/2009JB007096.
9. Jing, Z., S. Karato, 2009. The density of volatile bearing melts in the Earth’s deep mantle: the role of chemical composition. Chemical Geology. 262: 100-107.
8. Kawazoe, T., S. Karato, K. Otsuka, Z. Jing, and M. Mookherjee, 2009. Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter. 174: 128-137.
7. Jing, Z., S. Karato, 2008. Compositional effect on the pressure derivatives of bulk modulus of silicate melts. Earth Planet. Sci. Letters, 272: 429-436.
6. Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, S. Karato, 2008. Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter., 170: 156-169. 
5. Karato, S., D. Bercovici, G.M. Leahy, G. Richard, and Z. Jing, 2006. Transition zone water-filter model for global material circulation: Where do we stand?, in Earth’s Deep Water Cycle, AGU Monograph Series, 168, edited by S.D. Jacobsen and S. van der Lee. pp. 289-313.
4. Matsukage, K. N., Z. Jing, S. Karato, 2005. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Nature, 438: 488-491.
3. Jing, Z., J. Ning, S. Wang, S. Zang, 2002. Dynamic phase boundaries of olivine wadsleyite in subduction zones in the western Pacific. Geophys. Res. Lett., 29 (22): 2045, doi:10.1029/2001GL013810.
2. Zang, S., J. Ning, Z. Jing, 2001. Study on the rheology of subducting slabs. Science in China Series D: Earth Sciences, 44 (12): 1119-1127.
1. Jing, Z., J. Ning, 2001. A coupled computational scheme on thermal and phase structures of subducting slabs. Chinese Phys. Lett., 18 (10): 1297-1300.